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A large proportion of failures of machine parts is associated with the propagation of fatigue cracks. In such
cases the "life" of a part counted from the instant of crack nucleation constitutes a considerable part of its total time-
to-rupture. Fatigue fracture, which in the USA alone is being investigated in more than 200 laboratories, has been
studied by many investigators both in the Soviet Union (N. N. Davidenkov, S. V. Serensen, I. A. Oding, R. M. Schneid-
erovich, R. D. Vagapov) and elsewhere (Crowan, Frost, McClintock, Paris). However, insufficient attention has been
paid to quantitative studies of the growth of fatigue cracks.

In this article a phenomenological description of the process of crack propagation under the influence of cyclic
loads is presented. The propagation of cracks in elastic-plastic solids under the influence of monotonically increasing
loads is discussed first with particular reference to the determination of one of the size effects and the phenomenon of
discontinuous crack growth (section 1). In section 2 cyclic loading conditions are discussed; the application of the
Irwin-Orowan energy concept made it possible to derive a simple expression for the crack propagation rate which is
in good agreement with experimental data. A phenomenological approach to the problem of nonpropagating cracks is
described in section 3, while the problem of stability of crack propagation is analyzed in section 4. Finally, certain
concrete problems are discussed in section 5.

The fracture of a specimen under the influence of cyclic loads can be described in general terms as follows [1—
5]. At first no noticeable changes take place. Then, after a certain number of stress cycles, dislocations and
submicroscopic cracks are formed in the material, which becomes slightly weaker. In the next stage microscopic
cracks appear; the material continues to lose its cohesion and local plastic flow takes place. The final stage is
characterized by the formation of a macroscopic crack leading to brittle fracture [6—8]. It may be taken as an
established fact that the macrocrack grows during each stress cyele [9, 10]; fractographic examination of the fracture
surfaces reveals the presence of characteristic furrow-like formations resembling annual growth rings in tree trunks.

In formulating a phenomenological description of fatigue fracture it is convenient to divide the process into two
stages. In the first stage, the size of the dislocation and microcracks formed is comparable to the linear dimensions
of regions of strength heterogeneities (i. e., grains); at this stage, (i.e., the crack nucleation stage) it is necessary to
take into account the microstructure and heterogeneity of the material. The second stage is characterized by the
growth of one (most dangerous) macrocrack whose size is large in comparison to the grain size; when the crack
propagation rate at this stage is considered, the heterogeneity of the material may therefore be neglected and the
material may be regarded as homogeneous and isotropic. Only the latter stage (i.e., the crack propagation stage) is
considered below. However, the approach used can be applied in the analysis of transcrystalline and intercrystalline
microcracks or dislocations; in this case the pertinent constants (e.g., yield point or dissipation energy) assume,
naturally, different values appropriate to the material in the grain interior or in the grain-boundary regions.

Opinions about the relative parts played by the above two stages in fatigue fracture differ; the majority view
appears to be that the crack propagation stage constitutes the larger part of the total time-to-rupture of a fatigue
test piece [1, 3, 5,11-13].

1. CRACK PROPAGATION IN ELASTIC-PLASTIC BODIES UNDER THE INFLUENCE OF
MONOTONICALLY INCREASING LOADS

A crack in an ideal elastic body begins to grow only after the stress intensity coefficient N at the crack edge
has reached the value of Irvin's constant K, [14—16], the equality N = K. being satisfied during the quasi-static crack
propagation. It is clear that no erack propagation can take place in an ideally elastic body under the influence of
cyclic loads.

To explain the growth of fatigue cracks, it is necessary to resort to an elastic-plastic model of a solid. Let us
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therefore first consider the propagation of cracks in an elastic-plastic body under the influence of monotonically
increasing loads; in these circumstances a plastic region with a characteristic linear dimension d exists near the crack
tip. Let us confine our analysis to the most typical and general case in which the size of the plastic region is small in
comparison with the characteristic geometric dimension of the body in question (e.g., the crack length). However, the
general approach used below is applicable even when this condition is not satisfied (see, for instance, the elastic-
plastic analogue of the Griffith problem in [17]). When this condition is satisfied, it is possible to introduce the concept
of the stress intensity coefficient N; this coefficient determines the stress and strain distribution at distances from the
crack tip which are large in relation to d but small in comparison with the characteristic dimension of the body; it is
found from a solution of the purely elastic problem as a whole [18]. The following analysis is concerned with the fine
structure of the crack tip (Fig. 1).

Fig. 1

Condition on the crack edge in an elastic-plastic body. Let oy denote the yield stress in tension. The size of the
plastic region d can depend only on N, 0g, Young's modulus E, and Poisson's ratio », It should be born in mind that
N has the dimensions of force divided by length to the power of 3/2. Dimensional analysis [19] gives us

1E )5

d=a, (v “s)ﬂi. (1.1)

Here w;(¥, 05/E) is a certain dimensionless function,

When the external load monotonically increases, N also monotonically increases inthe vicinity of every point
along the crack edge, especially in the vicinity of point O (Fig. 1). It is assumed that at the instant of loading the body
under consideration is in a stress-free state. With increasing N the crack, generally speaking, will also increase.
Let v, denote the dissipation of energy (per unit surface area) due to crack propagation. The increase in the crack
length Al can obviously depend only on N, Ogs Vs Vs and E. Dimensional analysis gives

N2 N2 oo
Alz&?@(m* C ) (1.2)

Here & is a certain dimensionless function of its arguments.

Let us derive the equation of energy (Fig. 1). When the crack length is increased by an infinitely small value 61,
the total dissipating energy 2¥,6 evidently consists of two components. The first component 6E; is numerically equal
to the liberated elastic energy; it reflects the fact that N (and, consequently, d in accordance with (1.1) remained
constant when the crack length was increased by 61. The value 6E; can depend only on N, E, 0g, 61, and ». Using
dimensional analysis, we obtain

/5 N2
BB, = 2a, (2 ,v)TM. (1.3),

The average intensity of plastic deformation in the plastic region depends only on 05/E and v is independent of N,
since there is no characteristic dimension of the body in the case under consideration. This means that formula {1.3)
can also be obtained with the aid of (1.1) on the basis of considerations according to which O0E; represents the
irreversible work of plastic strains due to displacement of the plastic region (regarded as rigid) in the direction of the
crack propagation (Fig. 1).

The second component 0A , represents the irreversible work of plastic strains, which is associated with the
increase in the extent of the plastic region during loading and which is not related to the crack propagation; it reflects
the fact that the crack length remained constant when N was increased by 6N (Fig. 1). The value 6Ap = T(SSI‘p (where
T is tangential stress intensity, 63 is the increase in the volume of the plastic region and T, is the average plastic
strain intensity in 6S) can depend only on og, E, N, v, and 6N, Since T can depend only on og, 6S only on 6d, and Fp
only on o5, E, and v, using dimensional analysis and formula (1.1), we obtain
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84y =203 (S5 , v) T BV, (1.4)

Finally, we obtain the equation of energy in the form
N2 N3 AN
T = % (Gf ’ ”)T +°‘3<%s : V)a;«raz—' (1.5)

Equation (1.5) should be especially valid in the case of ideal elastic bodies; in this case the second term on the
right-hand side of (1.5) vanishes. In this limiting case one can, using Irvin's formula [14—16], find oy:

oy = { .4 (plane stress state). (1.6)

a{1—+v?) (plane strain)

Let us now apply the Irwin-Orowan physical concept, according to which v, represents a material constant [14—
18]. Equation (1.5) can be written in a form resembling the expression for the flow of hardening elastic-plastic solids:

_ agEN%N oo Ete)
al = s (K= T) (1.7)

Here K, is the Irwin constant.

Integrating (1.7), we find

[*10=_%[_N_2-+1n(1_ ;{V;)] (1.8)

20968 | K2

=0 at I=1)
The solid curve in Fig. 2 represents Eq. (1.8) plotted in dimensionless coordinates Ny and Aly:

2
Al,= asgzl‘;s; (—1), No=-—, (1.9)

Condition (1.8) plays the part of an additional boundary condition on the crack edge in an elastic-plastic body; after
determining by plastic analysis of stresses the function N = N(p, 1), where p is the external load parameter, it is
possible to find with the aid of Eq. (1.8) the dependence of I on p in any given concrete problem.

Fig. 2

As shown in Fig. 2, crack propagation in elastic-plastic bodies takes place also when N < K; the Trwin
condition N = K, is satisfied asymptotically at Aly > 1, when the starting conditions no longer affect the issue; in
practice, according to data in Fig. 2, any elastic-plastic body begins to behave Iike an ideal brittle body already at
Aly > 2.

The above qualitative singularities of crack propagation in elastic-plastic bodies are well known to experimental
investigators [20—22].

The quantities @y, o3, and o3 appearing in (1.1) and (1.9) remained indeterminate; they can be found from
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experimental data. In the case of through cracks in plates of elastie-plastic materials which satisfy the Tresk-St.
Venant plasticity condition there is an approximate solution of the elastic-plastic problem [23,17]. Calculation gives
in this case the following values of aj and @3 [18]:

a=2, =T (1.10)

The plastic region represents a segment of a length d on the extension of the crack.

Size effect. It has long been known that a given material can behave quite differently in different structures; it
may behave as a ductile material in thin-walled or small-size structures and as a rather brittle material in thick-
walled or large-size structures. This effect can be explained as a consequence of the above-outlined theory.
According to formula (1.1), the maximum possible size d of the plastic region near a crack tip is

Kz
dmax :‘xlé' (1.11)

For the sake of simplicity let us consider a specimen with a crack (Fig. 3). If d ;| , < L, the material will
behave during the process of fracture as a brittle material, i.e., the ultimate load will substantially depend on the
initial erack length; if, however, d; 4, > L, the material will behave as a completely ductile material and the ultimate
load will be only slightly affected by the initial crack length; in the limiting case of a hard-ductile body, i.e., when
dinax > L. the ultimate load will be independent of the initial crack length and will be entirely determined by the
effective cross section of the specimen. Since the presence of initial eracks or defects in any given material is
unavoidable, and since their size is random in character and difficult to control, it is obvious that in the case of

structures carrying tensile loads the designer will give preference to more ductile, even if less strong, materials.

Fig. 3

It follows from the foregoing that in the rational selection of structural materials one of the basic
characteristics considered (in addition to strength and pliability) should be the degree of reliability of the material
measured in terms of dimensionless parameter

K2
XZG:Q_CL—' (1.12)

Here L denotes the characteristic linear dimension of the structure in question. When X > 1, the material
behaves as ductile and the initial defects may be neglected in the design calculations. When X ~ 1 and especially when
X < 1, it becomes necessary to take account of the internal material defects and to apply the theory of cracks. It may
be stated that, generally speaking, the larger X, the more reliable the material, other factors (especially the number
and size of internal defects) being equal.

Discontinuous crack growth. The Irwin-Orowan concept of constant vx provides an accurate description of
continuous (gradual) growth of cracks in elastic-plastic bodies (Fig. 2). However, there is a second-order effect,
i.e., discontinuous crack propagation in certain elastic-plastic materials, which cannot be explained within the
framework of this concept. This phenomenon corresponds to the presence of a hump on the curve* N(Al) shown in
Fig. 2 by a dashed line and is analogous to the delay in plastic flow (a "tooth" on the ¢ (¢)diagram). The N(AI)
diagram is in its physical sense analogous to the o(e) diagram and, in accordance with (1.2), can be found directly by
experiment without bringing in any additional physical concepts. The presence of a hump on this diagram is evidently
due to the presence (in heterogeneous material structure) of fairly strong components inhibiting the growth of cracks
and dislocations; the height of the hump (as the height of the tooth [24]) is substantially dependent on the rate of

*Similar diagrams in articles by Ya. B. Fridman et al. were aptly called fracture diagrams.
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loading, i.e., on dN/dt, where t denotes time.
2. CRACK GROWTH UNDER CYCLIC LOADS

Let us now consider the quasi-static crack propagation in elastic-plastic bodies in the case of cyclic loads which
constitute certain periodic functions of time. If one formulates the problem of the fine structure of a crack tip for the
case in which the concept of the stress intensity coefficient is meaningful, the propagation rate of the crack tip di/dn
under the influence of cyclic loads can depend only on the maximum and minimum values of the stress intensity
coefficient during one stress cycle (Ny,,, and Ninin)s on the number of stress cycles n, on the energy v, dissipated as
a result of a unit surface area of the crack, and on material constants E, og, and v. Since n is very large, it can be
regarded as a continuous argument. Dimensional analysis gives

dl Nax Noax  Viip Os 2.1
dn G52 ¥ g vl (2. )

E EYy * Npax 7
Here ¥ is a certain dimensionless function of its arguments.

Crack propagation rate. The functional relation (2.1) can be determined on the basis of considerations
substantially similar to those outlined in the previous chapter. It was assumed previously that the body under
consideration is in a strain- and stress-free state at the instant of the application of the load; let us now analyze the
process of crack propagation due to increasing N from Nmin to Nypags it being assumed that events preceding the
instant at which N = Ny, led to the appearance of residual (initial) stresses and strains in the body. It is easy to see
that the entire reasoning process used in the derivation of formulas (1.1), (1.3)—(1.5), and (1.7) can be directly applied
to the case under consideration; however, i, @3, and «3 now depend on the deformation history before the initial
instant, at which N = Nj);,. Let oy denote a parameter characterizing the magnitude of initial stresses responsible for
the previous course of loading and crack propagation (o < og).

In analogy to formulas (1.1) and (1.7) we obtain

dl So  Os EN3 _ Go Gy N2 2.9
ww=ulF 3 Ve d=alF 3 ) 22

Here the material constants og, E, K¢, and » depend, generally speaking, on the previous deformation history.
For the sake of simplicity, however, this dependence is neglected in the following analysis.

It can be shown that the dependence of functions oy and o4 on the first argument ¢y/E may be neglected. This
follows from the fact that o< og and og/E is very small (~0.01) for all the structural materials; moreover, it is
known from the previous section that at oy — 0 there are finite limits of continuous functions a4(oy/E, 0g/E,v) and
a4{oy/E, O'S/ E,v). Let 8 denote the following material constant*:

s EKp2
B=d4 (07 EE" ] 'V) 25;; v (2.3)

It is quite natural to assume that no change in the crack length takes place when the load is reduced, i.e., when
Npmax decreases to Nyip.

Integrating (2.2) between Ny ;, and Ny ., we obtain an expression for the increase in crack length Al during one
stress cycle:

Al_—B Nl?nax—N?nm_l_ anCZ_N?nax (2 4)
N K VU kp—n ) '

Transforming to continuous variables, we find the unknown rate of crack growth

*Thus, the assumption that the influence of residual stresses on crack propagation may be neglected is in this
case verified by the possibility of replacing f(g) by F(0), since f(0) is finite and & small. This assumption is made in
all the investigations known to the author of the growth of fatigue cracks, e.g., in papers by McLintock [25], Paris
[26], and Hult [27].
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dl Nipax — NIZnin K2— le'nax )
= . 2.5
B( e +n Kot — Npin (2.3)

It is convenient to determine the crack propagation rate as given by (2.5), (1.8), and (1.9) with the aid of the
fracture diagram Ny versus Al, (Fig. 2).

Equation (2.5) plays the part of an additional boundary condition on the crack edge in an elastic-plastic body
subjected to cyclic loads; the dependence of I on external load parameters Py, and Py, in any given concrete
problem is found after substituting stress intensity coefficients Ny,,¢ and Ny, (determined by a purely elastic
analysis and constituting functions of p and I) in the differential equation (2.5) and solving it in respect of I(n).

Equation (2.5} can obviously be used to analyze also the case in which Py, and pyin vary with time (measured
in terms of the number of cycles).

Let us replace the right-hand side of (2.5) by a segment of a Taylor series; this gives the following, sometimes
more convenient equation:

6
L (Nf“""‘_ Yon . Moms— Noin o Vows— N ) (2.6)

=P 2K 3 3K S LK 8

If Nyyin < 0, one should take Nyip = 0 in (2.5) and (2.6), since in compression a crack closes (except perhaps
for small regions near the crack tip) and stress concentration at the crack tip disappears.

Comparison with experiment. In spite of the large number of experimental studies of fatigue strength, the
growth of fixed fatigue cracks has been investigated only in the last ten years. The first investigators in this field
(Orowan, Head, Frost, Weibull) failed to appreciate the local character of the laws of rupture at the crack tip and, as
a result, formulated their results in noninvariant variables. This local character became apparent after the work of
Irwin. Extensive experimental investigations of the rate of growth of fatigue cracks have recently been carried out by
Donaldson and Anderson [28], Paris [26], and Pearson [29] who studied numerous aluminum, molybdenum, titanium
and other metal alloys at Npj, = 0. Paris obtained the formula di/dn ~ N& .., while the formula df/dn ~ N&E . was
obtained by Pearson. In a previous work Liu, obviously influenced by erroneous theories of Frost and Dugdale [6],
derived an expression dl/dn ~ N?nax; Paris pointed out inaccuracies in his calculations which were admitted by Liu in
the ensuing discussion [26].

In accordance with (2.7), at Nmax/Kc £ 0.5 it is possible to replace (accurate to about 15%) Eq. (2.6) by the
Paris formula. If one bears in mind the wide statistical scatter of experimental data, such an agreement between our
results and the experimental results obtained by Paris and Pearson may be regarded as quite satisfactory.

Formula (2.5) describes also quite accurately the data of Donaldson and Anderson [28]. Markochev* found an
exponential relationship dl/dn ~ A + exp (BNyy5%) for four alloys studied in the range of a relatively small number of
cycles (103~104), i.e., at Nmax/Kc approaching 1.0 (low-endurance fatigue). These results are also satisfactorily
described by Eq. (2.5). The existence of different empirical formulas is attributable to a wide statistical scatter of
test results and to the fact that different investigations were carried out in different ranges of the Ny versus Aly
diagram.

The results of this investigation can be easily applied to shear cracks. An approximate theoretical relation
dl/dn ~ N;inax was derived for longitudinal shear cracks by McClintock, who based his derivation on the theory of
accumulation of plastic strains in the plastic region of the material [28].

3. NONPROPAGATING FATIGUE CRACKS

Experiment shows [6—8] that fatigue cracks produced in the initial fatigue stages sometimes do not grow
regardless of the number of loading cycles. In the physical sense this effect is obviously associated with the

*V. M. Markochev, Dissertation: "Methods of Investigating the Kinetics of Macrofracture of Sheet Materials
* Under Single and Repeated Loads" [in Russian], VIAM, Moscow, 1.966.
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microheterogeneity and grain structure of real materials and with their adaptability characteristics.* The latter
conclusion can easily be reached starting from the general nonvariance considerations for cracks that satisfy the
formulation of the problem of the fine structure of a crack tip when the concept of stress intensity coefficient is
meaningful. In fact, in the most general case the condition of nonpropagation of a crack tip at N = N . -and at a very
large number of loading cycles (when the effect of the initial conditions may be neglected) can be written in the form of
a certain inequality, in which parameters of the elastic-plastic medium (stresses, strains, displacements, etc.) and
their functional characteristics near the crack tip (in view of the local character of rupture) appear. Since all the
parameters of the medium near the crack tip at large n and at N = Ny, depend only on Nyjzx and Nyyipn, any given
inequality will be reduced to

Nmax<KYf (Nmin/Nmax) (O<KY<K0)‘ (31)

Here f is a certain dimensionless function of its parameter, and Ky is a material constant. If Ky = 0, the
fatigue limit of the material will obviously be not equal to zero.

Extensive experimental studies aimed at the determination of the condition of nonpropagation of a crack
emerging, in a special case, on the free rectilinear boundary of a "semi-infinite" plate in a direction normal to the
boundary (the plate being subjected at "infinity" to a uniform cyclic tensile stress p with a constant coefficient of
cycle asymmetry) were carried out by Frost [30, 31]. This work led to the formulation of an empirical condition
Pmax! < C, where C is a material constant. On the basis of considerations of dimensional analysis erna,x in this case
is equal to )xplznaxl, where A is a certain number. Hence, on the basis of the general condition (3.1) a crack will not
grow if prznaxl <Ky /A. This must be regarded as being in satisfactory agreement with Frost's results, especially if it
is borne in mind that in Frost's experiment at small ! the necessary condition d < [ (fine structure of the crack tip)
was only partly satisfied.

It should be noted that Irwin's condition N = K, for brittle cracks can be obtained from the same nonvariance
considerations.

4, STABILITY OF CRACK PROPAGATION

Investigations of conditions of stable crack propagation are of considerable importance because the transition to
the unstable range leads in practice to a failure of a given structure.

Monotonic increase in the load. Let p denote the external load parameter and ! the crack length parameter,
which is a certain functionof p. Let us assume that the external load and crack length increase with increasing p and
1, respectively. The parametric condition of the stability of growth of the crack tip will then be in the form

d
g§i>0- (4.1)

Changing the sign in (4.1) will give the condition of instability. Let us find the form of (4.1) in the case of a
monotonically increasing load acting on an elastic-plastic body. Since the function N = N(p, {) is determined from the
results of elastic analysis of stresses, the dependence of p on I is given in an implicit form by (1.8). Differentiating
it in respect to I and using (4.1), we obtain the following condition of stability:

o203 (K2 — N?) oON z_?_]i
[ Lo _ﬁ]/ >0, (4.2)

The condition of instability is obtained by changing the sign in (4.2). Inequality (4.2) makes it possible (on the
basis of elastic analysis of the problem) a priori to determine the regions of stable and unstable crack propagation on
the surface (p, ).

In a special case, at N = K, we obtain from (4.2) the following condition of the stability of crack propagation:

N [ON
a | < 0. (4.3)

*V. V. Bolotin drew the author's attention to the role played by adaptability in the problem under consideration.
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Cyclic loads. In accordance with (2.6) the length of a crack under the influence of cyclic loads always
monotonically increases with increasing number of stress cycles (d1/dn > 0). Considering the increase in applied load
during a single cycle and using formulas (2.2) and (2.3) and condition (4.1), we obtain—in the same way as before—the
following condition of stability:

K2(K2—N?) ON7[0N
(Rt @

The condition of instability is obtained by changing the sign in (4.4). In accordance with (4.4) the number of
cycles before the onset of instability (which usually leads to the failure of a given structure) is given by the equation

Kp(Ep—N) =280 =N, ). (4.5)
in which we substitute p = ppax and function ! = l{py,5s Pmin. n) found from a solution of the differential equation (2.5).

Finally, it should be noted that the solution obtained from (2.5) has a limit N(p, l){Kc, When this limit is
approached, the crack propagation rate approaches infinity (though the crack length is finite).

5. CONCRETE PROBLEMS
Let us consider some most typical problems of the propagation of fatigue cracks.
An analysis of the Griffith problem. Let an infinite plate pulled at infinity by uniaxial stresses oy = p have a

through rectilinear crack of a length 21 (Fig. 4). The applied stress is normal to the crack line. In this case the stress
intensity coefficient is given by [14]

N=pViIVZ. (5.1)

Let us assume that the load p is a certain periodic function of time (Pyax™S P > Ppin)-

Fig. 4

In accordance with (2.5) and (5.1) the crack propagation rate is given by

dl 1—al
'_—dn:*ﬁ[(a—b)l+ln———1_bl]
2 2
_pmax Pmin> 5.2
(a__——ZKCZ, b.—:m . (5.2)

At ppipn < 0 one should take b = 0.

The number of cycles at the instant of the loss of stability ny is determined with the aid of (5.1), (5.2), and (4.5)
from the following set of equations: :
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ala+ 1) =1, (5.3)

_ dz
Ban, = S I “brjgj—In(l—a) -4 —bjayz

aly

al

Here I denotes the initial crack length.

The solution of (5.2) exists in the range 0 <n < ng, Iy < I < a~!, where the maximum possible number of cycles
N, is given by the second equation in (5.3) at el = 1, in which it is only necessary to substitute ny for ng. It is obvious
that the boundary of the existence of the solution n = n, defines the onset of brittle fracture corresponding to the
Griffith solution p?nax = ZKEZ [32]. The latter corresponds to the instant of rapid acceleration of crack propagation.

In accordance with (4.4), (5.1), and (5.3) atn, >n > nr the crack will propagate under unstable conditions; in
these circumstances ng should be regarded as the number of cycles to rupture of the plate as a whole.

In accordance with (5.2) the function 7 = I(n) monotonically increases from I = Iy to I = a1 = I(ng); at the same
time, I'(ng) = «. Values of this function at aly = 0.1 and b = 0 are given below for certain values of dimensionless
variables Iy = al, nx = afn.

=1 4 6 8 - 10 12 14 15
1,=0.10 0.12 0.15 0,48 0.22 0.30 0.55 0.82

Below we reproduce values of pyax calculated from (5.3) for different numbers of cycles ny at b =0 and
Bp?nax < ZKE3 (in dimensionless variables a, = al, nfy = ,Bnc/lo).

ne=0 2 4 6 10 20 160
2, =0.80 0.48 0.40 0.35 0.29 0.25 0.20

The fatigue limit in this case is approximately K%{ ~ O.ZK@.

On the basis of (2.4) and (5.1) the condition Bp;‘nax A 2K(23 means that the increase in the crack length per cycle is
small in comparison with the total crack length.

It is known that standard tensile tests on elastic-plastic materials give highly reproducible results, while the
results of fatigue tests on the same materials are as a rule widely scattered. This fact is attributable, in the theory
postulated, to the presence of parameter l; in formula (5.3); this parameter represents the length of cracks initially
present in the material or formed in the initial fatigue stages and is evidently a stochastic material constant.

Thus, the statistical nature of fatigue strength is analogous to the statistical nature of brittle strength.

A crack emerging on the body surface. Let a rectilinear crack of a length [ emerge on a free flat boundary of a
half-space in a direction normal to this boundary. It is assumed that the conditions of plane strain or plane stress
state are satisfied. It is assumed also that the crack edges are not under load and that cyclic stresses p parallel to
the boundary of the half-space are applied at infinity. In this case the stress intensity coefficient is [33]

N=079 p VI (5.4)

All the qualitative singularities characteristic of the preceding problem are retained in this problem. In
particular this applies to formulas (5.2) and (5.3) for the crack propagation rate and the ultimate number of cycles;
calculations carried out above also remain valid, a and b being given by the following expressions:

o 2
Pmax Pmin ‘
roa b==0.62 e (5.5)

a=0.62

A crack under the influence of a concentrated force. Let the opposite edges of a through rectilinear crack of a
length 27 in an infinite plate be acted on by two equal and opposite concentrated forces P. The forces are applied in
the center of the crack normal to its surface; there are no stresses applied at infinity. In this case the stress
intensity coefficient is

(5.6)
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Let P be a periodic function of time (py 5 >P > 0). In accordance with (2.5) and (5.6) the crack propagation
rate will be

dl P?nax ( P?nax >] (5 7)
W=~3[2n2K62l o\l —smga/l

In this case a fatigue crack begins to grow when the initial crack length [, is increased to I under the influence
of the load monotonically increasing to Py, during the first loading cycle. In accordance with (5.6) and (1.8) the
length I is found from

2 2
asEK 2 [ Prax < Pmax )] 5.8
ly=1Ip— Do 2R 4-Inii— TR I (5.8)

which is easily solved with the aid of the graph in Fig. 3.

The solution of Eq. (5.7) can be represented in the form

L/l

T (5.9)
® 7T 22 [z 1n (1 —2)]
1/l
< 2m2K 2B 2n2K 2 202K 2 l>
Ty == n, ly== s Ll TR TS 1
Plax . Plgnax Phax

Certain values of function Iy = l«(n,) at I, = 1 are given below:

ne=0 1 2 4 8 12
L,=1.00 1.60 1.75 2.31 2.81 3.0

In accordance with the general condition for nonpropagation of cracks (3.2), the crack under consideration will
grow to a length ly

Ponax (5.10)
ZY= ZTCZsz » . .

after which its growth will cease (at Iy, = 1, ZY* & 3 and K% ~ Ké/3).

A crack in a rectangular cross section beam (Fig. 5). Let a beam of rectangular cross section be subjected to
pure alternating bending by a moment M (Mpax S M > ~Myyax). In this case the stress intensity coefficient in the tips
of symmetrically growing cracks will be [34]

— i
Ne B VT® (=) (5.11)

Some values of function f are given below:

Ao=0 1 2 4 6 10 15 20
f(A)=0 0.11 0.20 0.32 0.39  0.47 0.53 0.57

In accordance with (2.5) the crack propagation rate is

O M ()~ In [ — M2 ()] (5.12)

M B
(.= m=1n)

The solution of (5.12) is easily found with the aid of graphical integration. The function A depends on ny, on the
initial value Ay, and on M,. The ultimate number of cycles to rupture is, in accordance with (4.5) and (5.11), given by

M. VA, ho, M) =1, (5.13)

if the increase in the crack length per cycle is negligibly small in comparison with the beam width. As a numerical
example the following figures can be cited: at Ay = 0.05 and My = 0.33 we have A, ~ 0.4 and nfx = 10.

Several values of the function A(ns) are given below:
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ny=0 2 5 7 8 9 9.5
A =0.05 0.06 0.08 0.11 0.15 0.25 0.36

Thanks are due to Yu. N. Rabotnov for his valuable comments.
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